Maximum Marks: 75 ## END TERM EXAMINATION THIRD SEMESTER [B. TECH.] FEBRUARY 2023 Subject: Discrete Mathematics Paper Code: CIC205 | Time: 3 | Hours Maximum mark | 2000 | | |-----------------|---|---------------------------|------------| | | tempt five questions in all including Q.No.1 which is compul-
tect one question from each unit. Assume missing data, if any | Sor y. | | | 1 | | | | | | (3x5 | =15) | | | Q1 An | swer all the following questions briefly: | 6 | 6 | | _p a) | Represent the statement using predicate and quantifier and negate it | (3) | (W | | b) | For all the real number x if $x > 5$ then $x^2 > 25$
Evaluate the condition of the function to be Surjective? Give | (3) | | | /c) | Example of it Find the Converse and Contrapositive of the Statement "If x is | | 3 | | (d) | positive then $x \neq 0$ " Define Euler path and Euler circuit with the help of Example | (3) | | | e) | Prove that Set of All ineteger Z does not form a Group Under | (3) | | | | Multiplication with identity element as 1 | | | | | <u>UNIT-I</u> | | | | Q2 g) | Draw the following set operations with the help of Venn diagram | (4) | | | | i) Union
ii) Intersection | | | | | iii) Disjoint iv) Difference | | | | (d, | Prove that "if x,y \in Z (set of integer) such that xy is odd then both x and y are odd, by proving its contrapositive both x and y are odd, by proving its tautology By Rules of | (4)⑤ | | | <i>(</i> 2) | Show that $((\mathbf{p} \rightarrow \mathbf{q}) \land (\mathbf{q} \rightarrow \mathbf{r})) \rightarrow (\mathbf{p} \rightarrow \mathbf{r})$ is tautology by Rules of | (7) [©] | | | Q3 a) | Preposition Prove the statement " if x is an integer and x^2 is even the x is | (4) |) | | /b) | also even
Check the validity of the argument. If the races are fixed or the
casinos are cooked, then the tourist trade will decrease, if the
tourist trade decreases, then the police will be happy. The
police force is never happy therefore the races are not fixed. | (4) | | | | P.T.O. | | * | | | | | | | | × ^{c)} | In how many ways can a team of 11 cricketers be chosen from 6 bowlers, 4 wicket keepers and 11 batsmen to give a majority of batsmen if atleast 4 bowlers are to be included and there is one wicket keeper? | (7) | |-----|-----------------|--|-----------------| | | | <u>UNIT-II</u> | | | Q | 4 a) | Analyse all the three cases of Master method in solving | (7) | | | b) | Recurrance Relation Minimize the given function using K-map F = ABC'D' + ABC'D + AB'C'D + ABCD + AB'CD + ABCD' + AB'CD' | (8) | | /Q5 | <i>3</i>) | Let A = { 1,2,3,4,6} and R is a relation on Set A such that aRb if a/b (a divide b) Check wheather Relation R is POSET | (7) 🕒 | | | b) | What are the different Solution methods for first order Recurrence Relations with constant coefficient? Explain with example? | (8) | | | | UNIT-III | | | Q6 | a) | Show that if $a^2 = e$ for all a in a group $G(A, *)$, then G is Commutative | (5) | | | b) | Explain homomorphism, Isomorphism, and Automorphism with Example | (5) | | | c) | State and Prove Lagrange's Theorem | (5) | | Q7 | a) | Analyse the necessary condition for the group to be Abelian? Give one Example | (5) | | | b)
c) | State Cayley's Theorem If for each a and b in group G, if $(ab)^2 = a^2b^2$, show that G is abelian | (5)
(5) | | * 1 | | UNIT - IV | | | Q8 | a) | Evaluate the total numbers of Colours Required for Proper Colouring of Complete Graph such that No two Adjacent vertex | (8) | | | b) | should have same colour
State and Prove the BFS algorithm with Example | (7) | | /Q9 | Wri | te short notes on the following: Five Colour Theorem Minimum Spanning Tree | (8) (S) (7) (3) | | | | | | CIC-205 P2/2